Ti-662 alloy is successfully researched by NewYork university in US and is a kind of high strength $\alpha+\beta$ titanium alloy developed based on Ti-6Al-4V titanium alloy, which is famous with good comprehensive performance. Ti-662 alloy is of excellent oxidation resistance, weld ability and corrosion resistance. At the same time, the high V content and Sn element bring high strength and performance, which tensile strength can reach to 1050MPa in annealed condition and reach to 1175MPa after quench and aging treatment at 450°C temperature. Hence, Ti-662 alloy is much better than Ti-6Al-4V alloy on hardening and effect of heat treatment. At the meanwhile, it is broader than Ti-6Al-4V alloy on performance tuning range. At present, this kind of alloy has attracted more and more attention.

Table 1									
			C1	. 10	• , •				
			C	hemical C	ompositio	on			
Ti	Al	V	Sn	Fe	Cu	C	0	N	ш
11	AI	V	311	re	Cu	С	U	IN	Н
balance	5.0-6.0	5.0-6.0	1.5-2.5	0.35-1.0	0.35-1.0	≤0.05	≤0.20	≤0.04	≤0.015
.,									
Υ	Residual								
	Each	Total							
≤0.005	≤0.10	≤0.40							
_	_	_							

Table 2								
Mechanical Properties								
	Diameter	Direction	σb	σ0.2	А	Z		
			(MPa)	(MPa)	(%)	(%)		
AMS	≤50.8	L	≥1034	≥965-1138	≥10	≥20		
4978F		T			≥8	≥15		
	>50.8~101.6	L	≥1000	≥931-1103	≥10	≥15		
		T			≥8	≥15		

Tabl	e 3
Iuoi	\cdot

Table 3							
		Mech	anical Prop	erties			
	Diameter	Size of cross section when heat treatment	Direction	σb (MPa)	σ0.2 (MPa)	A (%)	Z (%)
	≤25.4	≤25.4	L	≥1207	≥1103		≥20
			T		≥1207	≥6	≥15
	>25.4~50.8	≤25.4	L	≥1207	≥1103	≥8	≥20
			T		≥1207	≥6	≥15
		>25.4~50.8	L	≥1172	≥1069	≥8	≥20
AMS			T			≥6	≥15
4971F	>50.8~76.2	≤25.4	L	≥1172	≥1103	≥8	≥20
			T			≥6	≥15
		>25.4~50.8	L	≥1138	≥1069	≥8	≥20
			T			≥6	≥15
		>50.8~76.2	L	≥1069	≥1000	≥8	≥20
		_	T			≥6	≥15
	>76.2~101.6	≤25.4	L	≥1138	≥1069	≥8	≥20
			T			≥6	≥15
		>25.4~50.8	L	≥1103	≥1034	≥8	≥20
			T			≥6	≥15
		>50.8~76.2	L	≥1069	≥1000	≥8	≥20
			T			≥6	≥15
		>76.2~101.6	L	≥1034	≥965	≥8	≥20
			T			≥6	≥15

Fig.1 Micrograph 200X